# Nano+Nuclear Batteries

Mark Paulson STS 201 4/18/05

# Introduction

- Radioisotope Overview
- Betavoltaic
- Self Reciprocating Cantilever
- Macro->Micro->Nano->Application
- Environmental/Social Impact
- Questions Anytime

## Nuclear Battery?

Goal: Convert energy from radioactive decay to electricity

#### RADIOISOTOPE FUEL

- Type of radiation
   -Alpha
  - -Beta
- Half-Life

Long -> Long battery life Short -> Higher power

| Consider 1 mg for power source |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                         | Energy<br>Content<br>(mW-hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chemical Battery<br>(Li-ion)   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fuel Cell<br>(methanol, 50%)   | 3 called to a second of the se |
| 210-Po (5% -4<br>years)        | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3-H (5% -4 years)              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# **Betavoltaic Batteries**

- Direct Conversion pn-Junction Type
- Radiation Energy Used to Create Electron Hole Pairs (EHP) Near Junction
- EHPs Diffuse into the Depletion Region of the Semiconductor *pn*-Junction
- Resulting Current is from n- to p-type semiconductor
- Net Power Can be Extracted



•0.04~0.24nW
Nanopower
•0.1~0.3% Efficiency
•No Performance
Degradation
After 1 year





# Inverted Pyramid Betavoltaic

- Increased pn-Junction Area-> Increased Depletion Region
- Liquid or Gas Solute Source



terent book the box

— 200 µm — 1

# Self Reciprocating Cantilever

- Ionizing Radiation Accumulates Charge On Cantilever
- Leads to Attractive Force
- Beam Discharges When Close or On Contact
- Resulting Movement is a Periodic Charge Integrator



# Scaling Down to Nano

Panasor

01-2007

Nuclear Plus

2

- Long History of Nuclear Battery Use
- Currently No Nano-Nuclear Batteries
- Nuclear Physics Works on Nano-scale
- Limited by Ability to Nano Fabricate
- Research Driven by MEMS
   Application
- Major Funding by Military
- Consumer Electronic Application?

## Environmental/Social Impact

- "AAAAAAAAAA" Battery
- Viable Power Source for MEMS and Similar Systems
- Recycle Nuclear Waste
- Aren't Cheap

#### Radiological

- Small Dose
- Increase in the Probability of Exposure

## **Question?**

### • Thanks to James Blanchard, Hui Li, Amit Lal, and Douglass Henderson for Borrowed Pictures